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1. INTRODUCTION 

The field of genomics has undergone a profound 

transformation in recent years, driven by advances in data 

analysis techniques and the convergence of multiple 

disciplines. One particularly innovative avenue of 

exploration is alignment-based sequence comparison [1-6], 

a process that lies at the heart of understanding genetic 

diversity and evolutionary relationships. Later, alignment 

free methods were employed to compare very long 

sequences [7-17]. Here, in this article, we introduce a 

multifaceted approach that combines numerical 

representation [18], image conversion from numeric array 

and machine learning for the purpose of sequence 

clustering [19, 20].  

Traditionally, the comparison of DNA or protein sequences 

has relied on complex algorithms that operate on raw 

genetic data. However, these methods can be 

computationally intensive and challenging to interpret 

visually. Our approach begins by encoding genetic 

sequences into numerical representations where different 

pixel intensities for the four nucleotide bases, viz. A, T, C 

and G provide a concise and standardized format for 

genetic data.  

To make this genetic information more accessible and 

intuitive, we take the additional step of converting these 

DNA sequences into images [21, 22]. Each nucleotide 

corresponds to a pixel intensity in the resulting image, 

thereby creating a visual representation of the genetic 

sequence. This transformation enables researchers and 

scientists to harness the power of image analysis techniques 

for the comparison and interpretation of genetic data.  

Moreover, we leverage machine learning algorithms to 

cluster these image-based representations of genetic 

sequences [23-25]. Several clustering methods, such as k-

means [26], Gaussian mixture model [27], hierarchical 

clustering [28] and spectral clustering [29], are employed to 

automatically group similar sequences together. This fusion 

of image-based sequence representations and machine 

learning offers an efficient approach to explore genetic 

diversity.  

In this article, we highlight the potential applications of our 

approach in genomics research, personalized medicine, and 

biodiversity conservation. By bridging the gap between 

computational analysis, visualization, and machine learning 

[30, 31], we aim to empower researchers with a powerful 

tool that unlocks deeper insights into genetic patterns and 

evolutionary relationships.  

In Sec. 2, we provide a comprehensive exposition of our 

methodology providing the details of the numerical 

representation and the subsequent image generation 

process. Following this, we proceed to extract features from 

these images which serve as the foundation for our 

Machine Learning model development. In Sec. 3, we 

furnish our experimental results.  

 

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 
ABSTRACT 

A comparative analysis of DNA sequence is investigated through Image Processing. The underlying 
algorithm transforms, in a novel way, genetic data into images. The information is encoded by using 
the pixel intensities representing the four constituent nucleotide bases viz. A, T, C and G. These 
sequences are then employed to generate visual representations, facilitating an intuitive understanding 
of complex genetic information. Our study integrates machine learning techniques to compare and 
cluster these DNA sequence-based images, offering a powerful tool for classification. By leveraging 
machine learning algorithms, we enable the automated recognition of genetic 
similarities/dissimilarities within genomes which, in turn, streamline the time-consuming process of 
traditional sequence comparison. 
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To rigorously assess the accuracy and robustness of the 

algorithm, we employ it on full genome sequence of fish 

mtDNA taken from benchmark dataset [6]. Finally, we 

conclude summarizing the key findings and insights 

derived from our result. Additionally, we outline potential 

avenues for future exploration and development in this 

field. 

  

2. ALGORITHMIC WORKFLOW 

 
Fig. 1 depicts the flowchart of our novel technique and the 

components of the algorithm workflow. The major steps of 

our algorithm are described next. 

 

2.1 Numerical Array Representation: 

 

Here we represent each DNA sequence through a numeric 

array with four uniformly distributed intensities. To do so we 

associate the pixel values with each of the four nucleotides in 

a DNA as follows: Adenine (A) → 1, Cytosine (C) → 63, 

Guanine (G) → 127, and Thymine (T) → 255. As an 

example, following this association, a DNA sequence 

ATTGCCAT may be represented as the numeric array {1, 

255, 255, 127, 63, 63, 1, 255}. 

2.2 Converting a Numerical Array into an Image: 

To represent this numerical array as an image, we need to fix 

the dimension of the image. To this end, we calculate the 

length of the array and maintain 3:1 aspect ratio while setting 

the value of height and width of an image. The array is then 

converted into an image where each value represents an 

intensity level of a pixel. For example, 1 represents black 

while 255 represents white etc. The image will have a grid-

like appearance where the number of rows and columns in the 

grid matches the calculated size. This resizing process 

ensures that the array is represented in a visually meaningful 

way as an image, and the format is often used for 

convenience and visual clarity. The resulting image can be 

analyzed or displayed more easily than a long one-

dimensional array. 

2.3 Feature Extractions from Image: 

The statistical method is a powerful approach for analyzing 

the spatial distribution of grey-level values within an image. 

These methods involve calculating local characteristics at 

each point in the image and extracting a set of statistics from 

the distribution of these local characteristics. One common 

approach is using histogram-based features, which are 

considered as first-order statistics [13]. These features are 

derived directly from the original image without considering 

the relationships between neighboring pixels. 

 

In the context of texture analysis, various statistical measures 

can be employed to capture important characteristics of 

texture patterns beyond histogram-based features. Here, we 

will consider only two such features: skewness and entropy 

and show that they suffice, to a good approximation, to 

generate the expected phylogeny amongst closely related 

organisms.  

 

Skewness: It is a measure of asymmetry of a distribution. 

Skewness is defined as  
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Where Pi is the probability of occurrence of a pixel with 

intensity level i. 

Here, μ is the average intensity level while σ2 represents 

variance, i.e., average fluctuation of intensities about the 

mean value. In equation 1, G is the number of distinct 

intensity levels in a typical image. In this article we choose 

G=4 and consequently I run over the set {0,1,2,3}. μ3=0 if the 

histogram is symmetrical about the average value of the 

intensity. Otherwise, positive skewness leads to a longer tail 

on the right while negative skewness indicates a longer tail on 

the left of the distribution. The data points corresponding to 

DNA sequences of closely related species is expected to 

show, in a natural way, togetherness in terms of skewness 

values amalgamating within a cluster. 

 

Entropy: Apart from skewness, we compute entropy of an 

image constructed from the DNA sequence. Entropy H is a 

measure of the amount of information contained in an image. 

It is defined as 
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In the context of images, entropy is often used to characterize 

the amount of uncertainty or disorder in the distribution of 

pixel values which is essentially used to capture textural 

similarities among DNA sequences. It is the central moment 

that measures sharpness of the histogram peaks in the 

frequency distribution of pixels. Here we consider the entropy 

value computed from a DNA sequence as a characteristic 

measure of phylogenetic nearness. The method mentioned 

here applies to the principles of texture analysis based on 

these moments (statistics) to identify and compute features of 

a DNA sequence. 

2.4 Clustering with Statistical Features: 

Machine learning clustering is a powerful technique used to 

uncover hidden patterns and group similar data points 

together. In this context, statistical features play a vital role in 

characterizing the underlying structure of the data. Utilizing 

above mentioned statistical features (skewness and entropy) 

in machine learning clustering algorithms such as K-Means, 

Hierarchical Clustering, or DBSCAN enables us to group 

data points with similar statistical properties. These methods 

consider the distribution of features within each cluster to 
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find natural groupings and patterns within the data. Here we 

use unsupervised clustering technique i.e., K-Means 

clustering. 

 

 
 

Fig. 1.  Flowchart depicting the stepwise conversion of DNA 

sequence into an image consisting of four different intensities 

corresponding to different pixel values and subsequent 

generation of a successful model through the extraction of 

features from the image 

 

3. EXPERIMENTAL RESULTS 
 

 

 
 

Fig. 2 Grey image of the numeric array constructed from the 

DNA sequence of Baboon. 

 

 

 

First, we read the fasta sequence of mammals mtDNA and 

convert the DNA sequence into a numerical array. Then we 

use this array to create the image shown in Fig. 2 by inserting 

the pixel intensities at the corresponding array elements. 

Using equations 1 and 2 we extract two statistical features 

viz., skewness and entropy from the image as shown in Table. 

1. The primary output of unsupervised learning is the 

discovered structure or grouping within the data. This may 

take the form of cluster assignments for individual data 

points, centroids for each cluster and visual representations of 

the data’s inherent structure, such as scatter plots, heatmaps 

or dendrograms. Here we choose clustering technique to 

visualize the data. 

 

In Fig. 3, the graph illustrates the relationships among distinct 

species, employing the K-Means clustering method. This 

graph visually conveys the degree of similarity/dissimilarity 

among these species, offering insights into their evolutionary 

connections. 

 

In the context of testing efficiency of our method we have 

made a comparative study with the benchmark dataset 

pertaining to fish mtDNA. We find the result of our analysis 

to be quite promising. Indeed, to quantify the amount of 

similarity, we obtain the normalized Robinson-Foulds (nRF) 

metric between our dendrogram and that in the esteemed AF-

Project [3]. Having published our method in the benchmark, 

the nRF turns out to be 0.77. In Fig. 4 we obtain the 

corresponding phylogenetic tree for fish mtDNA sequence. 

 

 

 
 

Fig. 3 K-Means clustering in 2D on the data set for mammals 
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Table. 1 Two features viz., skewness and entropy are 

obtained from the images of 18 species of mammals. 

 

Sl No. Species Skewness Entropy 

 
0 

 
Baboon 0.68746 0.34233 

1 Blue_whale 0.63108 0.40532 

2 Cat 0.55412 0.32023 

3 Common_chimpanzee 0.67651 0.32198 

4 Cow 0.60677 0.43494 

5 Fin_whale 0.62116 0.40825 

6 Gibbon 0.71840 0.38087 

7 Gorilla 0.68515 0.44225 

8 Gray_seal 0.62889 0.10560 

9 Harbour_seal 0.62657 0.07239 

10 Homosepiens 0.69009 0.31283 

11 Horse 0.63063 0.23573 

12 Mouse 0.57241 0.44780 
13 Orangutan 0.74093 0.43136 
14 Platypus 0.39506 0.32062 

15 Pygmy_chimpanzee 0.67535 0.31427 

16 Rat 0.62592 0.44948 

17 White_rhinos 0.63357 0.06434 

 

 

 

 
 

Fig. 4 Dendrogram for fish mtDNA sequence having 25 

species using our algorithm. 

 

4. CONCLUSION 

 
In this article we have adopted an interdisciplinary 

approach to unravel the genetic diversity. By combining 

principles of image processing and machine learning, we 

have retrieved genetic information. The synergy among 

image processing, encoding and machine learning yields a 

comprehensive study that enhances the accessibility of 

genetic data. Here, we have been able to place in a novel way 

the different species in the right cluster by applying lesser 

number of physically relevant statistics compared to other 

well-known algorithms in the context of phylogenetic 

reconstruction. Moreover, our method expedites the 

identification of evolutionary relationships for huge number 

of genetic data. We believe that in future it is possible to 

extend our existing algorithm to achieve superior results 

through the incorporation of deep learning. 
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